Thermodynamics of bromate and iodate of potassium in dioxane-water mixtures from conductance measurements

P.P. Misra and P.B. Das¹

Department of Chemistry, Ravenshaw College, Cuttack 753003 (India), 14 September 1978

Summary. The free energy of transfer ($\triangle G_1^0$) of KBrO₃ and KIO₃ from water to 10, 20 and 30% dioxane-water mixtures have been studied from conductometric measurements. The $\triangle G_1^0$ values are in the order of BrO₃ > IO₃.

Studies of electrolytic conductance in dioxane-water media of varying dioxane content were initiated by us² at 30, 35, 40 and 45 °C 0.01. In the present communication, attempts have been made to evaluate the thermodynamic function $\triangle G_1$ for the transfer of KBrO₃ and KIO₃ from water to the respective dioxane + water media, which would give some information regarding ionic solvation.

Materials and methods. The salts and dioxane used were of E. Merck, 'extra-pure' varieties. Purification of dioxane, preparation of solvents, solutions and measurements of the conductance have been reported earlier². The conductance measurement was of an accuracy of ± 2 in 1000. The concentration range was from 0.01 to 0.001 moles · 1⁻¹.

The plot of ΔG_t^0 vs. r^{-1} for KCl, KBr and KNO₃ in dioxane + water mixtures⁶ are found to be linear. Knowing the ΔG_t^0 values of KBrO₃ and KIO₃, the ionic radii of BrO₃ and IO₃ could be estimated from the above plot. They are 2.5 Å and 3.2 Å respectively. Utilising these values, the ΔG_i^0 has been split up into 2 parts according to Roy et al.7. It consists of an electrostatic part $\Delta G_{t(el)}^0$ corresponding to a charge in the dielectric constant of the medium, and another nonelectrostatic part or chemical contribution, $\Delta G_{t(Ch)}^{0}$ arising from the specific chemical interactions between the ions and the solvent, and is, therefore, solvent dependent. The $\Delta G_{t(el)}^{0}$ has been calculated from the Born's equation utilizing the values of ionic radii obtained. The $\Delta G_{t(Ch)}^{0}$ was then eval-

Table 1. Free energy of transfer of KBrO₃ and KIO₃ from water to dioxane + water mixtures at different temperatures

Mass fraction of dioxane	⊿G ₁ ⁰ /J⋅mole KBrO ₃ 10%	20%	30%	K1O ₃ 10%	20%	30%
30	1012	2012	3043	612	1152	1853
35	1113	2313	3443	714	1215	1954
40	1265	2756	3354	1080	1356	2134
45	1313	2754	3603	1016	1646	2754

Table 2. Electrical and chemical part of the thermodynamic quantities accompanying the transfer of KBrO₃ and KIO₃ from water to dioxane + water mixtures at different temperatures

	$\Delta G_{t(el)}^{0}/J \cdot mole^{-1}$			$\Delta G_{t(Ch)}^{0}/J \cdot mole^{-1}$				
	KBrO ₃							
30	904	1560	2578	108	452	465		
35	696	1452	2484	417	961	959		
40	830	1597	2656	435	1159	1688		
45	577	1428	2504	736	1296	1099		
	KIO_3							
30	836	1442	2384	-224	- 290	- 531		
35	643	1343	2297	71	- 127	- 342		
40	768	1476	2455	312	- 120	- 321		
45	541	1321	2315	575	322	439		

Results and discussion. The plot of λ vs $C^{1/2}$ was found to be linear and λ° has been obtained from the extrapolated values2. Since dielectric constant of the medium is low, the dissociation constant K has been calculated by Fuous and Krauss³ and Shedlovsky's⁴ method. The values obtained by both the methods are in good agreement. The standard thermodynamic parameters ΔG° , ΔH° and ΔS° have been calculated. The plots of ΔG° , ΔH° and ΔS° vs. solvent compositions were found to be linear. The extrapolated values gave the thermodynamic parameters for water. The standard thermodynamic quantities (ΔG_t^0) from water to dioxane + water mixtures could be calculated from the values of water and dioxane + water mixtures by Feakins method⁵. These are tabulated in table 1. The probable uncertainties in ΔG_t^0 are $\pm 15 \text{ J} \cdot \text{mole}^{-1}$.

The ΔG_t^0 values are observed to be positive at all solvent compositions and at all temperatures. The positive value indicates that the salts are in a higher free energy state in dioxane + water mixtures than in water, suggesting that water has more affinity for the salts for dioxane + water mixtures.

uated. These values are presented in table 2. It is evident that the $\Delta G_{t(Ch)}^{0}$ values are mostly negative in case of KIO₃, which indicates that the transfer of KIO₃ from water to dioxane + water is favoured as far as the chemical interactions are concerned. In case of KBrO3 it is positive, suggesting the transfer as unfavourable as far as chemical interactions are concerned. $\Delta G_{t(el)}^{0}$ is positive in both cases and is of the order $BrO_3 > IO_3$ and hence the ionic solvation is of the reverse order.

To whom reprint requests should be addressed.

N.C. Das, P.P. Misra and P.B. Das, Experentia, in press (1978).

R.M. Fuoss and C.A. Krauss, 55, 476 (1933).

T. Shedlovsky, J. Franklin Inst. 225, 439 (1938).

D. Feakins and D.J. Turner, J. chem. Soc. 1965, 4786.

N.C. Das and P.B. Das, Thermochem. Acta, submitted.

R.N. Roy, W. Vernon and A.L.M. Bothwell, Electrochim. Acta 17, 5 (1972).
H. P. Bernets and M. M. Spetzer, J. chem. Soc. for. Trans I 1973,

1492.